
Aerodynamics

Va and the Left Turning Tendencies

The Whys

- For a single axis and in one direction of the flight control Rudder can be fully deflected once to each stop
- The speed at which the airplane can't develop more than the load limit – 3.8g to -1.52g
- The airplane will stall at the load limit

- Va is determined by:
- $Va * \sqrt{Design}Limit = Vs * \sqrt{3.8} = Vs * 1.95$
- It is approximately 2* the clean stalling speed
- GA planes have a stall speed of not to exceed 61 Kts CAS
- Maximum Va speed will then be $61*\sqrt{3.8} = 118.0$

- The load limit force is generated by Load Factor
- Load factor is a function of lift
- Lift increases at the square of the speed

Stall lift (L at CLmax) increases with V2:

$$L_{stall} = \frac{1}{2} \rho V_{stall}^2 SC_{L_{\max}}$$

At Va, we want:

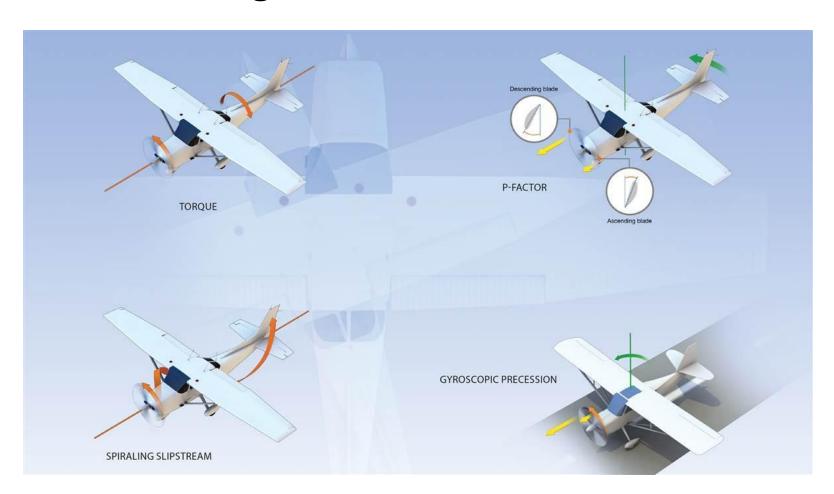
$$L_{stall} = n_{limit} \cdot W$$

But L \propto V², so:

$$n_{limit} \propto \left(rac{V_a}{V_s}
ight)^2$$

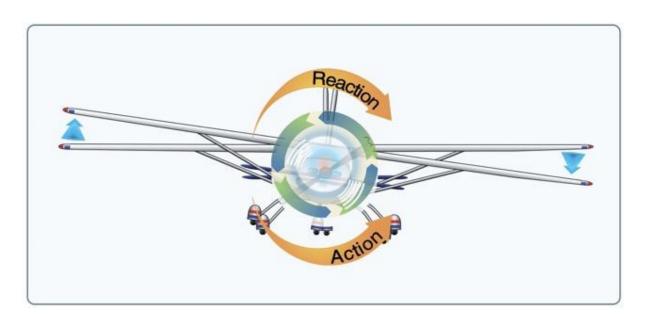
Solve for Va:

$$V_a = V_s \sqrt{n_{limit}}$$


- The stall speed is a function of weight Higher weight = Higher Stall Speed
- A control surface will generate an aerodynamic force that will cause a rotational acceleration
- Newtons second law F=M*A
- Rewritten A=F/M
- So a decrease in weight (mass) can cause a higher acceleration
- Va must then go down with a decrease in weight

• $Vanew = Vamax * \sqrt{new} weight / max weight$

Special Airworthiness Information Bulletin and Explanation



Torque

Newtons third law – For every action there is an opposite and equal reaction

Torque

Newtons third law – For every action there is an opposite and equal reaction

The propeller rotates clockwise

The reaction is counter clockwise

This pushes on the left tire causing more drag/friction

Torque

Newtons third law – For every action there is an opposite and equal reaction

In the air it is a left rolling tendency that turns into a left yawing tendency

Torque

Designers try to minimize torque effect by:

Mounting the vertical stabilizer off of the longitudinal axis

Canting the engine

Providing more incidence on the left wing

Slipstream Effect

Slipstream Effect

The propeller causes air to blow backwards and in a corkscrew pattern

The air spirals around the fuselage and hits with vertical stabilizer on the left

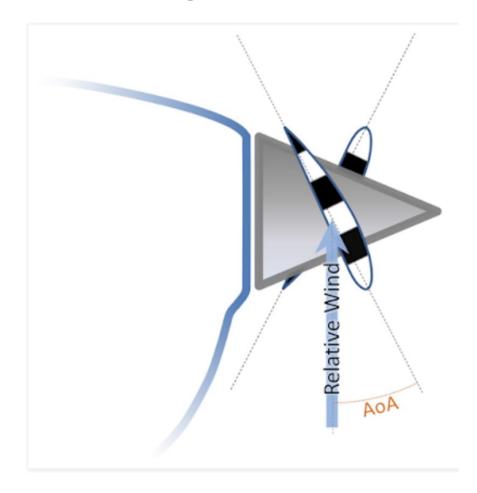
The stronger the slipstream (engine power) the greater the effect

Slipstream Effect

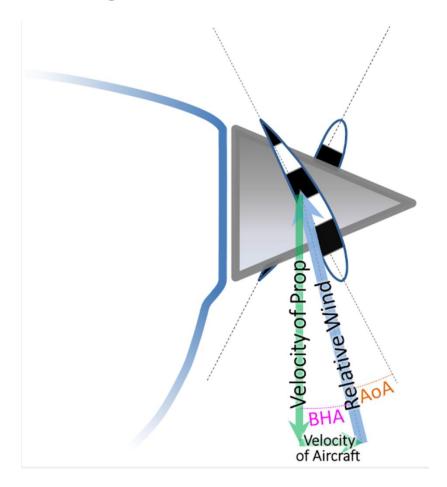
Also makes the elevator and rudder more effective with more power

The ailerons are not in the slipstream so they aren't affected The effect is upon the takeoff roll and throughout the flight

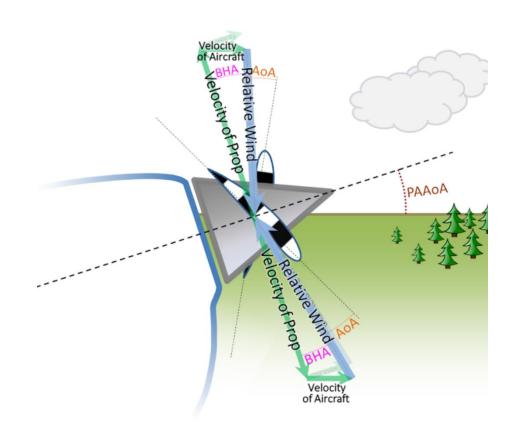
P-Factor


The propeller blades are mounted in opposite angles on each side of the hub and drive shaft

When the airplane isn't moving, both blades have an equal angle of attack


The relative wind to the descending blade is straight up from the ground

The relative wind of the ascending blade is directly from above



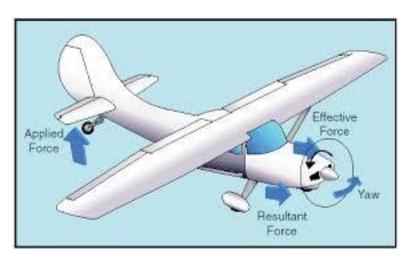
P-Factor

When the airplane has an angle of attack of more than 0°, the descending blade will have a higher angle of attack than the ascending blade

This means the right blade will develop more lift - Thrust

This causes a left yawing tendency

This is felt upon rotation and climbing and when the speed is low in level flight (High Angle of Attack)



Gyroscopic Precession - Sometimes

The propeller is rotating

It can be considered a disc for practical purposes

If a force is applied to a rotating disc the effect of that force will be 90° from the applied point in the direction of the rotation

Gyroscopic Precession - Sometimes

On rotation in a nosewheel airplane the force is applied to the bottom of the disc

The force is applied 90° later – on the left side of the disc

This causes a RIGHT turning tendency

Gyroscopic Precession - Sometimes

On a tailwheel airplane the force is applied to the top of the disc on the takeoff roll to lift the tail

The force is applied to the top of the disc

The force is applied 90° later – on the right side of the disc

This causes a LEFT turning tendency

Gyroscopic Precession - Sometimes

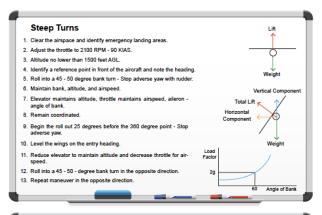
Upon rotation the precession will be a right turning tendency In nosewheel/tailwheel airplane pushing the control wheel or stick forward applies a force to the top or the disc This cause a LEFT turning tendency

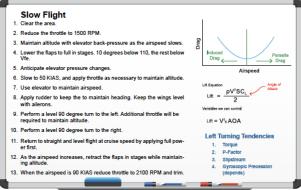
Left turning tendencies video

P-Factor Video

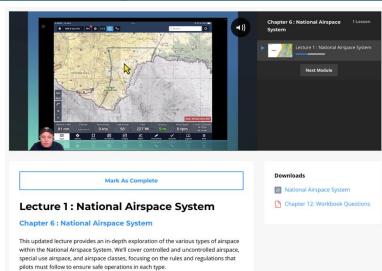
Gyroscopic Precession - Intuitive Explanation

From Us to You!


Preflight Briefings


Teach Brief-Fly!

From Us to You!


Teach Brief-Fly!

Free Preview of Our Online Course for Initial CFI-A

Click here to get a Preview of the Online Course

Our Newest Product

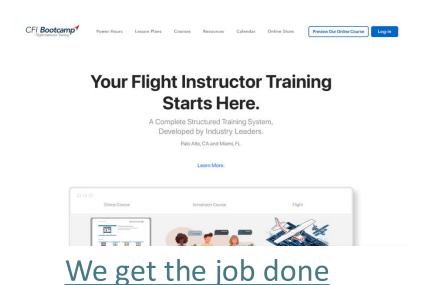
Every Knowledge and Risk Management Element in the CFI ACS - oral portions I-IV explained

Built for audio – Driving etc.

Also includes video and PDF companion guides

CFI ACS Smart Study Pro

Super Offer – Available Only to our Power Hour Members

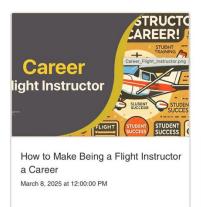

- 1. 42 hour CFI-A online course \$1200
- 2. CFI ACS SmartStudy Pro Audio and PDFs \$199
- 3. Both for a limited time $$700 \frac{1}{2}$$ Off

Prepare for the CFI at home with the online course and when driving with SmartStudy Pro

GET IT NOW FOR \$700

Start your CFI Training and Finish it!

In Conclusion...

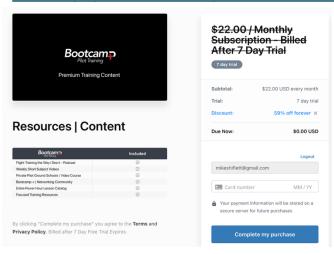

Past Power Hour Information

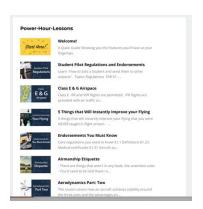
Click here to get outlines of previous power hours

Power Hour Lesson Outlines

Created Around Hour Long Weekly Live Topic Specific Instructional Training.

Powered by Bootcamp +





See Every Full-Length Power Hour

Click here to get a huge discount to our membership site to see every previous power hour – Over 240 of them

It will work out to be \$9/month after the 7-day Free Trial!

